A Novel Fully Humanized 3D Skin Equivalent to Model Early Melanoma Invasion.

نویسندگان

  • David S Hill
  • Neil D P Robinson
  • Matthew P Caley
  • Mei Chen
  • Edel A O'Toole
  • Jane L Armstrong
  • Stefan Przyborski
  • Penny E Lovat
چکیده

Metastatic melanoma remains incurable, emphasizing the acute need for improved research models to investigate the underlying biologic mechanisms mediating tumor invasion and metastasis, and to develop more effective targeted therapies to improve clinical outcome. Available animal models of melanoma do not accurately reflect human disease and current in vitro human skin equivalent models incorporating melanoma cells are not fully representative of the human skin microenvironment. We have developed a robust and reproducible, fully humanized three-dimensional (3D) skin equivalent comprising a stratified, terminally differentiated epidermis and a dermal compartment consisting of fibroblast-generated extracellular matrix. Melanoma cells incorporated into the epidermis were able to invade through the basement membrane and into the dermis, mirroring early tumor invasion in vivo. Comparison of our novel 3D melanoma skin equivalent with melanoma in situ and metastatic melanoma indicates that this model accurately recreates features of disease pathology, making it a physiologically representative model of early radial and vertical growth-phase melanoma invasion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative comparison of the spreading and invasion of radial growth phase and metastatic melanoma cells in a three-dimensional human skin equivalent model

BACKGROUND Standard two-dimensional (2D) cell migration assays do not provide information about vertical invasion processes, which are critical for melanoma progression. We provide information about three-dimensional (3D) melanoma cell migration, proliferation and invasion in a 3D melanoma skin equivalent (MSE) model. In particular, we pay careful attention to compare the structure of the tissu...

متن کامل

Melanoma detection with a deep learning model

Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions.    Methods: In this analytic s...

متن کامل

Use of a Tissue Engineered Human Skin Model to Investigate the Effects of Wounding and of an Anti-Inflammatory on Melanoma Cell Invasion

An increasing number of studies suggest inflammation stimulates tumour invasion. In melanoma, despite recent advances in targeted therapy and immunomodulatory therapies, this cancer remains difficult to treat. Our previous studies show melanoma cells interact with skin cells in their invasion into tissue engineered skin and suggest inflammation stimulates invasion. The aim of this study was to ...

متن کامل

Non-melanoma skin cancer diagnosis with a convolutional neural network

Background: The most common types of non-melanoma skin cancer are basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). AKIEC -Actinic keratoses (Solar keratoses) and intraepithelial carcinoma (Bowen’s disease)- are common non-invasive precursors of SCC, which may progress to invasive SCC, if left untreated. Due to the importance of early detection in cancer treatment, this study aimed...

متن کامل

MT95-4, a fully humanized antibody raised against aminopeptidase N, reduces tumor progression in a mouse model

Aminopeptidase N (APN/CD13) is involved in tumor cell invasion and tumor angiogenesis and is considered a promising therapeutic target in the treatment of cancer. To develop a novel monoclonal antibody-based cancer therapy targeting APN/CD13, we established a fully humanized anti-APN/CD13 monoclonal antibody, MT95-4. In vitro, MT95-4 inhibited APN/CD13 enzymatic activity on the tumor cell surfa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 14 11  شماره 

صفحات  -

تاریخ انتشار 2015